Divide and Transfer: Understanding Latent Factors for Recommendation Tasks

نویسندگان

  • Vidyadhar Rao
  • Rosni K. V
  • Vineet Padmanabhan
چکیده

Traditionally, latent factor models have been the most successful techniques to build recommendation systems. While the key is to capture the user interests effectively, most research is focused on learning latent factors under cold-start and data sparsity situations. Our work brings a complementary approach to the previous studies showing that understanding the semantic aspects of latent factors could give a hint on how to transfer useful knowledge from auxiliary domain(s) to the target domain. In this work, we propose a collaborative filtering technique that can effectively utilize the user preferences and content information. In our approach, we follow a divide and transfer strategy that could derive semantically meaningful latent factors and utilize only the appropriate components for recommendations. We demonstrate the effectiveness of our approach due to improved latent feature space in both single and cross-domain tasks. Further, we also show its robustness by performing extensive experiments under cold-start and data sparsity contexts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Topic Models and Latent Factors for Recommendation

The research of personalized recommendation techniques today has mostly parted into two mainstream directions, i.e., the factorization-based approaches and topic models. Practically, they aim to benefit from the numerical ratings and textual reviews, correspondingly, which compose two major information sources in various real-world systems. However, although the two approaches are supposed to b...

متن کامل

Cross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains

Cross-domain recommender systems represent an emerging research topic as users generally have interactions with items from multiple domains. One goal of a cross-domain recommender system is to improve the quality of recommendations in a target domain by using user preference information from other source domains. We observe that, in many applications, users interact with items of different type...

متن کامل

Latent Factor Interpretations for Collaborative Filtering

Many machine learning systems utilize latent factors as internal representations for making predictions. However, since these latent factors are largely uninterpreted, predictions made using them are opaque. Collaborative filtering via matrix factorization is a prime example of such an algorithm that uses uninterpreted latent features, and yet has seen widespread adoption for many recommendatio...

متن کامل

Discovering task-oriented usage pattern for web recommendation

Web transaction data usually convey user task-oriented behaviour pattern. Web usage mining technique is able to capture such informative knowledge about user task pattern from usage data. With the discovered usage pattern information, it is possible to recommend Web user more preferred content or customized presentation according to the derived task preference. In this paper, we propose a Web r...

متن کامل

A Novel Task Recommendation Model for Mobile Crowdsourcing Systems

With the developments of sensors in mobile devices, mobile crowdsourcing systems are attracting more and more attention. How to recommend user-preferred and trustful tasks for users is an important issue to improve efficiency of mobile crowdsourcing systems. This paper proposes a novel task recommendation model for mobile crowdsourcing systems. Considering both user similarity and task similari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017